

Trace Link Recovery for Software Architecture Documentation

Jan Keim, Sophie Schulz, Dominik Fuchß, Claudius Kocher, Janek Speit, and Anne Koziolek

www.kit.edu

Modelling for Continuous Software Engineering

2 13 February 2024 Keim et al. - Trace Link Recovery for Software Architecture Documentation KASTEL – Institute of Information Security and Dependability KIT Department of Informatics

Karlsruhe Institute of Technology

IR-based [Rodriguez20] **Trace Links** ~ ~ **NLP-based Requirements** [Zhang16] [Guo17] [Moran20]

Existing approaches

</> Code

Research Question and Contributions

How accurately can we identify trace links between textual informal SAD and formal models with our approach?

Contributions

- Extendable framework SWATTR (SoftWare Architecture Text Trace link Recovery) for creating such trace links
- Data sets for evaluation
- (Re-) Implementations of baseline approaches for comparison
- Code, evaluation results, and reproduction packages online

Artifacts at https://zenodo.org/record/4767470

Our Trace Link Model

5

13 February 2024

SWATTR Overview

Extracting Model Information

7

Extracting Text Information

+ Clustering

Analyses and Heuristics that contribute:

- Nouns and Plural Nouns
- Incoming/Outgoing Dependencies
- Pattern search
- Separators and Compound Terms

Modelling for Continuous Software Engineering KASTEL – Institute of Information Security and Dependability KIT Department of Informatics

10 13 February 2024 Keim et al. - Trace Link Recovery for Software Architecture Documentation KASTEL – Institute of Information Security and Dependability KIT Department of Informatics

Evaluation Setup

11

13 February 2024

Metrics: Precision, Recall, F1-Score
Recall is more important than precision
Comparison with two approaches

Measure	Acceptable	Good	Excellent			
Recall	.6069	.7079	.80 - 1.0			
Precision	.2029	.3049	.50 - 1.0			
			[Haves06]			

	Mediastore	TeaStore	Teammates
No. Sentences	37	43	198
No. Trace Links	25	25	80
No. Model Elements	14	13	8
Max TL per Sentence	2	2	7
Sentences Without TL	13 (35%)	22 (51%)	131 (66%)

Evaluation Results

	Mediastore		TeaStore		Teammates		Average			Weighted Avg.					
	Ρ	R	F1	Ρ	R	F1	Ρ	R	F1	Ρ	R	F1	Ρ	R	F1
SWATTR	.47	.60	.53	.63	.88	.73	.69	.89	.78	.60	.79	.68	.64	.83	.72
Rodr.&C.	.07	.32	.12	.10	.20	.13	.10	.15	.12	.09	.22	.13	.10	.19	.13
Zhang et al	.76	.52	.62	.35	.28	.31	.49	.30	.37	.53	.37	.44	.52	.34	.41

Identified Weaknesses

- Wrongly identified terms when terms have close naming to model elements
 - E.g. image and image components
- Model elements have similar naming
 - E.g. *MediaManagement* and *UserManagement*
- Short terms and abbreviations cause problems
 - E.g. GAE instead of Google App Engine (GAE) Database

→ Dependent on configurations, needs configuration per project based on identified properties

Discussion, Conclusion & Future Work

Results are good to excellent and outperform baseline approaches

- Limitation: linking is reliant on word similarity
 - Assumption that naming should be consistent
- Future Improvements and other work
 - Improve linking, less reliance on word similarity
 - Take relations into account
 - Combine results of different approaches to improve results
 - Find inconsistencies

Artifacts at https://zenodo.org/record/4767470

References

- [Hayes06] Hayes, J.H., Dekhtyar, A., Sundaram, S.K.: Advancing candidate link generation for requirements tracing: The study of methods. IEEE Transactions on Software Engineering 32(1), 4 (2006)
- [Rodriguez20] Rodriguez, D.V., Carver, D.L.: Multi-objective information retrievalbased NSGA-II optimization for requirements traceability recovery. In: 2020 IEEE EIT. pp.271-280. https://doi.org/10.1109/EIT48999.2020.9208233, ISSN: 2154-0373
- [Zhang16] Zhang, Y., Wan, C., Jin, B.: An empirical study on recovering requirement-to-code links. In: 17th IEEE/ACIS SNPD. pp. 121-126 (2016)
- [Guo17] Guo, J., Cheng, J., Cleland-Huang, J.: Semantically enhanced software traceability using deep learning techniques. In: 2017 IEEE/ACM 39th ICSE. pp. 3-14 (2017)
- [Moran20] Molenaar, S., Spijkman, T., Dalpiaz, F., Brinkkemper, S.: Explicit alignment of requirements and architecture in agile development. In: REFSQ 2020. pp. 169-185. Lecture Notes in Computer Science, Springer International Publishing (2020)